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ABSTRACT 

Several possible sources of inaccuracy that occur in the classical 
interpretation of caustics patterns generated during transient crack 
growth in elastic materials are examined using a ‘Bifocal Caustics’ 
set-up and a new full field optical technique called ‘Coherent Gradient 
Sensing’. During unsteady dynamic crack growth, strict #-dominance 
is generally absent, especially at times close to crack initiation and 
arrest, even in regions outside the crack-tip 3-D zone where plane stress 
conditions per&. In such cases a truly transient higher order expansion 
is found to be essential for correctly describing stress fields outside the 
3-D zone. 

1 INTRODUCTION 

The optical method of caustics is a widely used technique in 
experimental solid mechanics. In the area of fracture mechanics, in 
particular, it has ,been one of the primary tools of investigation of 
catastrophic failure, starting with the pioneering works of Manogg,’ and 
continuing over the years through the efforts of Theocaris,2 Beinert & 
Kalthoff,3 Rosakis et al. ,4 Zehnder & Rosakis,’ Ravi-Chandar & 
Knauss,6 among others. 

The technique has several advantages over other optical methods 
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which are mainly related to its simplicity. It requires a simple optical 
experimental set-up which does not involve the use of diffraction optics. 
It can be used easily either in transmission or in reflection mode. Data 
analysis is simple and does not require the use of complicated image 
processing techniques. The simplicity of the technique makes it an 
ideal candidate for high speed photography applications. In particular, 
the fact that the physical principle of caustics does not hinge on the 
availability of a coherent, monochromatic light source has allowed for 
the use of high-speed camera systems, which utilize white light 
illumination (for example, spark gap cameras of the Cranz-Schardin 
type). In addition, the lack of complicated optical components, such as 
diffraction gratings, beam splitters, etc., in a caustics set-up ensures 
minimal light intensity losses which are crucial for successful high-speed 
photography. Indeed, in such applications, light intensity is of the 
essence since the exposure times involved are often very short (of the 
order of nanoseconds). 

As currently used in fracture studies, the method of caustics is 
subject to two sets of simplifying assumptions, one in the analysis of the 
optical technique, and the other regarding the nature of the 
mechanical fields under study. The limitations introduced by the 
simplifications in the optical analysis of the method of caustics as well 
as an exact geometrical optics interpretation of the technique are 
discussed in Rosakis & Zehnder.’ It turns out that the simplified 
analysis deviates from the exact geometrical analysis in only relatively 
extreme regimes, and, for the most part, the simplified optical analysis 
is adequate. The corresponding issue regarding the assumptions made 
about the mechanical fields under study, however, is more trouble- 
some. Typically, interpretation of caustics data in fracture mechanics is 
done under the assumption that crack-tip deformation is well described 
by two-dimensional, steady state, asymptotic models. To the extent that 
these assumptions are violated in a laboratory specimen, caustics data 
are prone to misinterpretation and error. 

In this paper, we shall first briefly describe the method of caustics as 
it is currently used in elastodynamic fracture studies, with particular 
attention paid to the approximations involved. We will then review 
some of the attempts that have been made in the recent past toward 
quantifying the errors incurred due to crack-tip three-dimensionality 
and possible inadequacy of a steady state, asymptotic description of the 
crack-tip deformation. Finally, the results from an alternate full-field 
optical technique (Coherent Gradient Sensing,’ which is sensitive to 
the same deformation quantities as the method of caustics), will be 
presented. These latter results, in particular, will be shown to 
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substantiate the main contention of this paper, namely: the assumptions 
regarding the crack-tip mechanical fields under which interpretation of 
caustics data is customarily made is a potential source of large errors. 
In conclusion, possible ways to overcome these limitations through the 
use of more realistic, transient, higher-order descriptions of the 
mechanical fields will be suggested. 

2 THE OPTICAL METHOD OF CAUSTICS 

2.1 The physical principle 

Consider a plate specimen of uniform thickness, in the undeformed 
state. Let its middle cross-section occupy the x1,x2 plane of an 
orthonormal Cartesian coordinate system. The specimen is such that it 
causes non-uniform changes in the optical path when light is trans- 
mitted through it, or reflected from its surface. For a specimen made of 
a transparent material, the change in the optical path is due to 
non-uniform changes in the thickness of the plate and also due to 
gradients in the refractive index of the material. For a specimen made 
of an opaque material, the change in optical path is due to 
non-uniform surface elevations of the plate. In experimental solid 
mechanics, both gradients in refractive index and non-uniform thick- 
ness changes are related to gradients in the stress state which are 
induced when loads are applied to the boundary of the initial 
undeformed plate. 

Consider further a collimated beam of light traveling in the x3- 
direction, normally incident on the plate, as illustrated in Fig. 1. Under 
certain stress gradients, the reflected or refracted rays will form an 
envelope in the form of a three-dimensional surface in space. This 
surface, which is called the caustic surface, is the locus of points of 
maximum luminosity in the reflected or transmitted light fields. 

The deflected rays are tangent to the caustic surface. If a screen is 
positioned parallel to the x3 = 0 plane, and so that it intersects the 
caustic surface, then the cross-section of the surface can be observed on 
the screen as a bright curve (the caustic curve) bordering a dark region 
(the shadow spot) on the screen. Suppose that the incident ray, which is 
reflected from or transmitted through point p(x,, x,) on the specimen, 
intersects the screen at the image point P(X,, X,). The X,, Xz 
coordinate system is identical to the x1, x2 system, except that the origin 
of the former has been translated by a distance z, to the screen (zO can 
be either positive or negative). The position of the image point P will 
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Fig. 1. Caustic formation in (a) reflection, (b) transmission. 

depend on the gradient of the optical path change AS@,, x,) intr- 
oduced by the specimen as well as on the distance z, and is given by:7 

X = x + z.,V(AS(x,, x,)) (1) 

where X = X,e,, x = x,e,, and e, denote unit vectors, and ‘V’ denotes 
the two-dimensional gradient operator. In the subsequent discussions, 
Greek subscripts have the range 1, 2 while Latin subscripts take the 
values 1, 2, 3. Relation (1) describes the mapping of the points on the 
specimen onto points on the screen. 

2.2 The initial curve and its significance 

If the screen intersects the caustic surface, then the resulting caustic 
curve on the screen is the optical mapping of the locus of points for 
which the determinant of the Jacobian matrix of mapping eqn (1) must 
vanish on the specimen, i.e. 

J(x,, x 2, ; 4 = det [X,.,1 = det [L,, + z~(A~>,~~] = 0 (2) 
Equation (2) is a necessary and sufficient condition for the existence of 
a caustic curve.7 The locus of points on the reference plane (x,, x2, x3 = 
0) for which the Jacobian vanishes is called the initial curve whose 
geometry is described by eqn (2). 

For fracture mechanics applications which are relevant in this work, 
the plate specimen contains a stationary or running through-crack and 
the origin of the coordinate system is often taken to be on the crack 
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front at the specimen center. In such cases the initial curve is found to 
be a curve surrounding the crack tip, whose exact geometry and size 
will depend, among other things, on material constitution and on the 
distance of the specimen to the screen.7 In such cases the initial curve 
has some interesting properties which are briefly described below. 

All points on the initial curve map onto the caustic curve. In 
addition, all points inside and outside this curve map outside the 
caustic.7 Since light reflected both from the inside and the outside of the 
initial curve maps outside the caustic, the area within the caustic 
remains dark and is customarily referred to as the shadow spot. An 
example of a caustic and shadow spot obtained by reflection of light 
from the vicinity of a dynamically propagating crack in AISI 4340 steel 
is shown in Fig. 2. The crack-tip speed in this case was approximately 
1000 m/s. The circular rings surrounding the caustic and shadow spot 
are caustic images of stress waves generated during crack growth. Since 
the light that forms the caustic originates from the initial curve, 
essential information conveyed by the caustic comes from that curve 
only. 

Equation (2) defining the initial curve depends parametrically on zO. 
Thus, by varying z,, we may vary the initial curve position. If z, is 
large, the initial curve will be far from the crack tip. If z, is small, the 
initial curve will be close to the crack tip. In a practical experimental 
set-up, a camera is often used to record the transmitted or reflected 
light fields. In this case the object plane of this camera is the ‘screen’ 
and its distance from the specimen is z,. In a reflection arrangement, 
for example, the object plane of the camera is often set behind the 
specimen surface and thus the image is virtual. Variation of z,, can thus 
easily be achieved experimentally by simply varying the object plane of 
the recording camera system. 

Fig. 2. Caustic of a dynamically propagating crack in an AISI 4340 steel specimen 
(crack speed v - 1000 m/s). 
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The dependence of initial curve size on z, is an essential property of 
the method of caustics, and it can be utilized to scan the near-tip 
region to obtain information regarding the nature of the deformation 
field at different distances from the crack tip. This property will be 
utilized extensively in the following sections. 

2.3 Caustics by reflection 

For opaque specimens, caustics are formed by the reflection of light 
rays from the polished specimen surface. The shape of the caustic curve 
depends on the near-tip normal displacement u3 of the plate surface, 
initially at x3 = h/2, where h is the undeformed specimen thickness. 
The change in optical path in this case is given by: 

I 

l/2 

AS@,, x,) = 2u3(x1, x2, h/2) = 2h &334x3/h) 
0 

where &33 is the direct strain component in the thickness direction. For 
an isotropic, homogeneous, linear elastic solid, the above reduces to: 

As@,, x,) = 2@1, x2, h/2) 

033 
=- 

(on+ 022) l- 
v(o11 + 022) II WJh) (3) 

2.4 Caustics by transmission 

For transparent specimens the optical path change AS depends on both 
local changes in thickness and on local changes in refractive index, and 
can be expressed as: 

AS&, x2) = 2h(n - 1) j-‘” .s33 d(x,/h) + 2h j-1’2 An d(x,/h) 
0 0 

where n is the refractive index of the material. The first term represents 
the net optical path difference due to changes in plate thickness caused 
by the strain component c33. The second term is due to the stress 
induced change in refractive index of the material. This change in the 
refractive index An is given by the Maxwell relation, 

A+,, ~2) = &((Ju + 022+ 033) 

where D, is the stress optic constant and a, are Cartesian stress 
components. The above relation is strictly true for isotropic linear 
elastic solids. For such solids the strain component c33 can also be 
related to the stresses in a straightforward manner and the change in 
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length becomes: 

AS+,, x,) = 2h(D, - ; (n - 1))J1’2 
0 
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where 

x 
1 
@1*+~22) l--D2 

[ ( 

033 +%I + 022) >I} d(-dh) (4) 
vD 

1 
+ e - 1) 

D2=- 
E 

[ 1 D _ e - 1) 
1 

E 

E and Y are the Young’s modulus and the Poisson’s ratio of the 

2.5 Interpretation of caustics on the basis of plane stress analysis 

The discussion of the previous section was intentionally kept as general 
as possible within the assumptions of isotropic linear elasticity. For a 
cracked linear elastic plate of uniform thickness and finite in-plane 
dimensions, the optical path difference AS given by eqns (3) and (4) in 
general will depend on the details of the three-dimensional elastostatic 
or elastodynamic stress state that would exist at the vicinity of the crack 
tip. This will be a function of the applied loading, as well as of the 
in-plane dimensions and thickness of the specimen. Given the lack of 
full-field, three-dimensional analytical solutions in fracture mechanics, 
such information can be obtained only by means of detailed numerical 
calculations. Such an approach was adopted in Refs 9-11. 

material respectively. 

Nevertheless, there exist certain non-trivial special cases for which 
available asymptotic solutions, based on two-dimensional analyses, may 
provide adequate approximations for AS@,, x2). In particular, it has 
been argued that conditions of generalized plane stress will dominate in 
thin cracked plates at distances from the crack front larger than half the 
specimen thickness. 12-14 This would imply that if the initial curve is kept 
outside the near-tip three-dimensional zone, the resulting caustic could 
be interpreted on the basis of a generalized plane stress analysis. 

To illustrate the extent of the near-tip three-dimensionality, re- 
ference is made to Fig. 3 which shows a 3-D representation of the ratio 
(cJ~~/Y(c~~~ + Oar)), often called the degree of plane strain. This ratio is a 
measure of near-tip three-dimensionality and is obtained by means of a 
3-D finite element calculation, which models a stationary crack in a 
three-point bend specimen subjected to dynamic 1oading.l’ In regions 
where the deformation is locally plane stress, this measure is equal to 
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Fig. 3. Plane strain constraint near a stationary, dynamically loaded crack front in a 
three-point bend specimen. 

zero. In the figure, only one half of the specimen thickness is shown. 
The top surface corresponds to the mid-plane of the specimen. The 
maximum extent of the 3-D zone is approximately 0-4-O.%. For points 
outside this region, a plane stress approximation will be applicable. 
Indeed for such points the optical path difference AS (eqns (3) and (4)), 
which involve the ratio c~~JY((J~~ + CT&, will simplify to: 

where 

[ (Q - i (n - 1)) = c, for transmission 

C= 

I Y 

ii 
for reflection 

and 6,, and & are thickness averages of the stress components in the 
solid. In the above expression c, is called the stress-optical coefficient. 
These stress components will be provided by the generalized plane 
stress solution of the elastostatic or elastodynamic problem under 
investigation. 
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3 CAUSTICS GENERATED BY DYNAMICALLY GROWING 
CRACKS: CLASSICAL ANALYSIS, ASSUMPTIONS AND 

SHORTCOMINGS 

3.1 Analysis based on K;‘-dominance 

In this section we present the methodology that leads to the classical 
analysis of optical caustic patterns generated during dynamic crack 
growth in metals. We pay particular attention to the assumptions 
involved and we attempt to analyze some cases where these assump- 
tions break down. 

Consider a mode-1 crack propagating dynamically in a thin plate 
composed of a homogeneous isotropic, linear elastic material. The 
crack-tip velocity and the dynamic stress intensity factor are both 
allowed to be arbitrary functions of time. If a plane stress assumption 
is made, then the first stress invariant 8,, + & at the vicinity of the 
propagating crack tip can be asymptotically expressed as:16 

&I+ h22 = f-(v) qj---& -COS (042) + O(1) as t-,+-O (6) 
where 

2(1 + a?)($ - cu:) 
F(v) = [4 cyI(Y, - (1 + (w1)2] 

(y,,,= (1 -y)la 
v(t) is the instantaneous crack speed, K;l(t) is the instantaneous value 
of the dynamic stress intensity factor, 

r, = (x: + ( CY,X~)*)~‘~, 8, = tan-’ ((LE,x~)/x,) 

and the distorted polar coordinate 
moving crack tip. 

system (r,, 0,) translates with the 

From a mathematical standpoint the above expression is only the 
leading term of a transient asymptotic expansion for the stresses, which 
will be presented in Section 4. As will be seen in that section, only the 
leading l/fi term of the transient expansion has the same form as the 
corresponding term of an expansion obtained if steady-state conditions 
are assumed. Indeed the 0(1/G) t erm of the transient problem is 
obtained if the constant values for Kt and v of the steady-state case are 
replaced by their time varying counterparts. However, this is not true 
(9~ &r_gs~of _l&gher order.~ For the transient crack growth_problem,_such 
terms will in general contain time derivatives of v(t) and K:(t). As a 
result their importance relative to the leading term will depend on the 



192 Ares J. Rosakis et al. 

nature of the time history of crack-tip speed and stress intensity factor. 
In addition, the 8, variations of the transient higher order terms are 
found to be different from their steady-state counterparts of the same 
order in r,. 

The classical analysis of caustics is based on the premise that in a real 
experimental situation, eqn (6) will approximate the stress field at least 
in a non-vanishing annulus defined by b < r < a. The inner bound b is 
dictated by the extent of the three-dimensional zone surrounding the 
crack tip (see previous section) while a is determined by the transient 
nature of the loading (see Section 4). A region where eqn (6) holds is 
called a &‘-dominant region. 

If the optical path difference corresponding to eqns (5) and (6) is 
substituted in to the caustic mapping eqn (l), these become:17 

i 

X, = r, cos 0, + pr;3n cos T 
r, sin 8, 

x2=- 
36, 

aI 
+ LY,flr;3n sin 2 

I 

(7) 

where 

If one now imposes the condition for the existence of a caustic curve, 
eqn (2), the equation of this curve is obtained and its maximum 
transverse diameter D can be related to Kfl and v as follows:4 

GV) = W,) 
2v5 qw) 

ch PW1s'2 

where G(cu,) = (6.8 + 14*4c~, - 2.6c~f) x 10P3. 
For sufficiently small crack velocities (V < 0-3~~) the locus of points 

on the specimen (the initial curve) that maps onto the caustic is very 
nearly circular and its nominal radius can be approximated by:3,4 

roW = ( 3hcKfl(t)z, U5 

2$S&(v(t)) > (9) 

where 

c= Y 

~J 

c0 for transmission 

E~~~~r~reflcctior-__ ~~~ ~~ ~~~~~~~ ~~~ 

The above equations in the limit u ---* 0 are also valid for the case of a 
dynamically loaded stationary crack. In a typical experiment, a high- 
speed camera is used to obtain a time sequence of caustics. The 
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diameter D(t) of these caustics is measured and hence the stress 
intensity factor, K;‘(t), is computed using eqn (8). From eqn (9), one 
finds that rO(t) = tO(Kt(t), z,, v(t)) and as K;i(t) varies with time in a 
dynamic experiment, the radius of the initial curve would perforce 
change during the course of the experiment. Thus from the point of 
view of experiments, it is vital to know that relation (5) based on the 
plane-stress approximation together with the asymptotic expression (6) 
lead to a valid expression for the optical path difference field for at least 
the range of radii that the initial curve would cover during the event of 
interest. 

To make matters a little more explicit, suppose that during the event 
of interest (which could be the crack propagation phase) the initial 
curve radius is known from previous experience to vary in the region 
r,i” ~ r, I r,, for some choice of the object plane distance z,. Also, 
since the domain of validity of eqn (6) could in general be time- 
dependent as well, let a and b be such as to give the smallest annulus in 
which eqn (6) holds, for all times during the entire event of interest. 
Then, for a valid interpretation of the caustics in terms of the above 
formulas ( eqns (8) and (9)), the inequalities b < rmi” 5 r, I r,,,, <a must 
be satisfied in order to have the initial curve fall in a region of 
K$dominance at all times. 

The first attempts to address the issue of the validity of eqns (6)-(9) 
are reported in Ravi-Chandar & Knauss.6 A series of tests were 
performed using the method of caustics in transmission on identical 
specimens under identical stress-wave loading, varying from test to test 
only the object plane distance z,. In this manner a range of initial curve 
radii was scanned and, since presumably the actual stress-intensity 
factor history K;L(t) for various tests must be identical, the apparent 
stress intensity factors measured from caustics obtained from different 
object planes must also agree, at least for those times when the initial 
curve falls within the region of &‘-dominance. Their findings indicate 
that the assumptions behind eqn (6) might not generally be tenable. 
Since a substantial part of the dynamic fracture data extant in the 
literature has been obtained through the use of either caustics or 
photoelasticity, the ramifications of the result are potentially far- 
reaching and thus deserve more careful scrutiny. 

In particular, in the method of caustics, it would be preferable to be 
able to obtain the apparent stress-intensity factor values from different 
initial curves around the crack tip for the same specimen at any instant 
in time. While comparison of results across tests can be made with 
confidence for the loading regime of the experiments, this becomes 
more difficult in the crack propagation phase since small variations in 
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crack motion history could lead to large variations in the value of the 
stress intensity factor from test to test. 

This problem could be circumvented if one were able to obtain 
caustics from different initial curves simultaneously in the same 
experiment. In the following section we discuss an optical configuration 
that would allow for the simultaneous acquisition of dynamic caustics 
for two different object planes (and hence two different initial curves) 
using a single high-speed camera. 

3.2 Bifocal caustics experiments 

A schematic of the optical set-up required to bring two different object 
planes simultaneously into focus in a single camera is shown in Fig. 4. 
This schematic corresponds to a reflection arrangement for caustics. 
The set-up entails the use of two beam-splitters and two mirrors by 
which two optical paths of different path lengths are established 
between the opaque specimen and the high-speed camera. With 
reference to the figure, let the high-speed camera be set up to focus at a 
distance f from the camera lens. Along path (1) this would mean that 
the virtual object plane is located at a distance zol behind the specimen. 
Along path (2), however, by virtue of the increased length (2L) 
between the specimen and the camera lens, the object plane would now 
fall only a distance z o2 = zol - 2L behind the specimen. Thus the caustic 
obtained from the two paths would be from two different initial-curve 
radii. These two caustics could be made to appear on the film track of 
the high-speed camera either superposed or side by side. 

Beam Expander and Collimator 

Fig. 4. Schematic diagram of reflection bifocal caustics set-up. 
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In a similar manner, a bifocal optical arrangement for caustics by 
transmission can be designed. Such an arrangement is shown in Fig. 5. 
Here the laser light is transmitted through the transparent specimen 
and the two object planes are real and are located at two different 
distances, zol and zo2, in front of the specimen. 

Figure 6 shows a representative set of pictures for the case of a 
dynamically loaded stationary crack in AISI 4340 carbon steel. These 
were obtained by means of the reflection arrangement shown in Fig. 4. 
An example of bifocal caustics by transmission for the propagating case 
is shown in Fig. 7. These correspond to dynamic crack growth in 
Homalite-100. 

For nomenclatural convenience, the pairs of dynamic caustics ob- 
tained by use of this bifocal high-speed camera will henceforth be 
referred to as ‘bifocal caustics’, with the implicit understanding that 
such caustics are obtained from two different initial curves on the same 
specimen at the same time. By changing the distance L from test to test 
or by changing the focal plane of the camera, one could of course scan 
various sets of initial curves. 

3.3 Results of the bifocal caustics experiments 

The tests which are described below were done in a reflection 
arrangement and were performed on three-point bend AK1 4340 steel 
specimens 30.5 cm long, 15.25 cm wide, l.Ocm thick with an initial 
notch of length 3.8 cm. The specimens were heat-treated as follows: (1) 
normalize at 1650 “C for 1 h and air cool, (2) austenitize at 1550 “C for 
1 h and oil quench and (3) temper at 220 “C for 1 h and air cool. One 
surface of each specimen was lapped and polished. A Dynatup 8100A 

and Colli motor 

Camera 

Fig. 5. Schematic diagram of transmission bifocal caustics set-up. 



196 Ares J. Rosakis et al. 

Fig. 6. Representative sequence of reflection bifocal caustics of a dynamically loaded 
stationary crack in AISI 4340 steel. 

drop-weight tower was used as the loading device. A rotating mirror 
high-speed camera in conjunction with an argon-ion pulse laser was 
used to record a time-sequence of bifocal caustics as described earlier. 
The details of specimen preparation and the experimental set-up may 
be found in Krishnaswamy & Rosakis.” The pairs of caustics obtained 
at each instant of time were analyzed as described earlier to get the 
apparent stress-intensity factor histories. Only representative results 
will be presented here. Figure 8 shows the results for the uninitiated 

Fig. 7. Representative sequence of transmission bifocal caustics of a dynamically 
propagating crack in Homalite-100. 
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Fig. 8. Kf versus t plot obtained from reflection bifocal caustics of a stationary, 
dynamically loaded crack. 

dynamically loaded crack for specimen a-3. The two apparent stress- 
intensity factors obtained from the diameters of the bifocal caustics 
pairs are shown as functions of time from impact. The object plane 
distances used in this experiment were zol = 4.82 m and z, = 3.08 m. 
The region of possible measurement uncertainty is indicated as vertical 
error bars. Figure 9 is an alternate representation of the experimental 

.O , 1 I 1 1 

0 100 200 300 400 500 600 

Time (11s) 

Fig. 9. Plot of K&/K& versus time from the reflection bifocal caustics experiment 
when a crack is stationary but dynamically loaded. 
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results for specimen a-3. Here the ratio of the two stress-intensity 
factors from the bifocal caustic pairs (K&/K&) is plotted as a function of 
time from impact. Also plotted as a function of time are the radii of the 
initial curves for the two choices of object plane distance. It is seen that 
the apparent measured stress-intensity factor is not quite independent 
of the region from which the measurement is made. Indeed. 
differences greater than 40% are observed between the measured 
stress-intensity factors obtained from initial curves whose radii vary by 
less than 20% of the plate thickness. Further, the larger measured 
stress-intensity factor corresponds to the larger object plane distance 
and hence the larger initial-curve radius. Unlike the results of Rosakis 
& Ravi-Chandar” for the static case, these differences persist even for 
r,/h 2 0.5. 

A representative set of results for the crack propagation phase is 
shown in Fig. 10. These are again time history plots of the two 
measured dynamic stress-intensity factors from the bifocal caustic pairs. 
The larger initial curve is again seen to give a larger apparent 
stress-intensity factor. Differences of up to 30% in the measured values 
are seen in these experiments. The initial-curve radii are almost always 
greater than one-half the specimen thickness during the crack- 
propagation phase. These differences, therefore, do not disappear for 
r,,/h I O-5 during the propagation phase as well (unlike the quasi-static 
case). 

270 

0 a 

-2 
01 

= 3.1om r.,/h E (0.75 - 0.89) 

-2 01 
= l.i34m rat/h E (0.59 - 0.69) T 

180 
620 640 660 680 700 

Time (IIS) 

Fig. 10. Plot of Kt versus time from reflection bifocal caustics experiment when a 
crack is dynamically propagating in AISI 4340 steel. 
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4 TRANSIENT ASYMPTOTIC ANALYSIS OF DYNAMIC 
CRACK TIP FIELDS 

The experimental results (obtained by means of bifocal caustic pairs), 
discussed in the previous section, clearly show the inadequacy of the 
classical analysis of caustics in accurately measuring the dynamic stress 
intensity factor during transient crack growth events. Even if the initial 
curve radius lies well outside the regions of near tip three- 
dimensionality, where plane stress conditions are achieved, the as- 
sumption of Kf’-dominance (validity of relation (6) outside the three 
dimensional zone) clearly fails, resulting in the inconsistencies de- 
scribed above. 

In this section, we discuss an explanation of this phenomenon by 
relaxing the assumption of Kf-dominance. While dynamic caustic 
patterns have conventionally been analyzed under the assumption of 
Kf’-dominance, the use of higher order terms has been the recent 
practice in the method of photoelasticity.” However, all available 
higher-order elastodynamic solutions thus far have been for the case of 
steadily propagating cracks, and the applicability of such solutions to 
highly transient problems is questionable. 

We will now relax the assumption of K;1-dominance and examine the 
validity of a transient higher-order expansion for dynamic crack growth 
which has become available recently by Freund & Rosakis.” Although 
their results hold for transient crack growth with non-uniform crack tip 
speed history, they also provide an expression for the special case of 
transient growth under constant speed. This is still a truly transient 
situation since field quantities are allowed to be functions of time. 
Here we restrict our discussion to this case since our experimental 
results conform with the assumption of constant speed. According to 
the results of Freund & Rosakis,19 the higher-order expression for 
(6,, + &;,) describing a constant velocity, transient crack tip field is 
given by: 

(711 + uzz 3u2 

2&Z: - c;> 
=-A,cos(6',/2).r;l"+~A, 

4c: 

+ 
[I %A2 + (I- $(A,,)} cos (0,/2) 

+ $ D'(A,) cos (3&/2)] . r;” 
I 
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+[{~A~+(,-~)D’tA,)Jcoste,)] .r, 

+[{$b+(l-$)D’(A,) 
+ $( I- $)D2(Ac,) + (1 - $)A.} cos (38,/2) 

I 1 

+ {3’%42, +;(I -~)o’(a,)+~d,]cos(e,/2) 
I I 

+ (& D2(A,)} cos (5&/2)] . r:n 

+[{+A~+(~-~)D1(A~)+~+(l-$%}cos(20,) 

+ { $ @(A,) + ; (1 - $)D’(A’) + ;&}] . r; + o(rf) 
I I 

(10) 

where the differential operators D’(m) and (y) are defined as follows: 

@(A,) = k = 0, 1, 2, . . . 

and 
D2(A,) = D1(D’(A,)) 

ii, = ($A#c: - v2) A, =A&) 

Note that the spatial variation of the terms associated with 
coefficients A, are identical to the ones that should be obtained from a 
higher-order steady state analysis. Of course, in the general transient 
case, Ak are functions of time and crack tip velocity. Also, D’(A,), 
II’ and ii, depend on time derivatives of the time dependent 
coefficients A,. For example 

where 

4 G’(t) 
A,(t) = - - 

(1+ a%) 

3 /.&ii [4a,a, - (1 + Cq]’ 

Thus, D’(A,) is related to the first time derivatives of the stress 
intensity factor and velocity history. 
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By using the transient field given in eqn (10) and re-arranging terms, 
one can obtain a relation involving the x1 gradient of (& + &J as 
follows: 

wl, 6) = 
a( &,I+ &**) 2fi r:” 

.& 

1 
F(v) cos 7 

r 6 76 
1 

cos - cos - 

+ &rfn - 
3e,+r 

: P4 ++/35+/&4 

cos - 2 cos --! 2 cosl 2 1 

cos 8, 
+ /37rf'2 - 

3e + 4r:‘*> 
cos A 

2 

(11) 

where 
2(1+ cu;)(cu: - n;) 

F(v) = L4 cu,& - (1 + cyf)2] 

and IL P2, L . . . , & are functions of time related to the coefficients 
of relation (10). 

At each time instant under KP-dominance, Y;‘(G, 0,) is a constant 
and equal to the instantaneous stress intensity factor K;‘. If significant 
higher-order transient terms exist, then the spatial variation of Y;‘(q, f3,) 
will be given by the right hand side of eqn (11). 

4.1 CGS experiments 

A new full field optical technique, Coherent Gradient Sensing (CGS) 
has recently been developed by Tippur et ~1.~ for measuring crack tip 
deformation fields. The method can be used either in a transmission or 
a reflection mode and like caustics is sensitive to deformation induced 
gradients in the optical path. In transmission these gradients are due to 
refractive index changes while in reflection these are due to non- 
uniform surface slopes. This technique, which is described in detail in 
Ref. 8, has similarity to the method of caustics regarding the deforma- 
tion quantities it measures, and it can be used as easily to study crack 
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growth in both transparent and opaque solids. Using this technique, 
validity of relations (10) and (11) has recently been studied by 
Krishnaswamy et al. *O In this work, the method of Coherent Gradient 
Sensing has been used to demonstrate the accuracy of the higher-order 
transient expansion in describing the crack tip stress fields during the 
unsteady dynamic crack growth. 

Figure 11 shows a selection of CGS interferograms corresponding to 
dynamic crack growth in impact loaded, three-point bend specimens 
made of PMMA. A rotating mirror high-speed camera and a pulsed 
laser light source is used to record the CGS patterns. Here we have a 
transmission optical arrangement and the fringes correspond to con- 
tours of equal (a/&J( 6,, + a*;,). The details of the experimental set-up 
are given by Krishnaswamy et al.*’ 

Figure 12 shows the analysis of an interferogram corresponding to 
time t = 20 ps after crack initiation. The crack tip velocity is approxim- 
ately 300 m/s. In this early time it is expected that transient effects are 
still important. The figure shows the variation of Y;’ versus normalized 
radial distance (r,/h) for different radial lines (0, = 0, 30”, 45”, 120”) 

Fig. 11. CGS interference patterns around a dynamically propagating crack in PMMA 
(v - 300 m/s). 
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Fig. 12. Plot of y;’ versus (r,/h) along different radial directions around a propagating 
crack (20 ps after crack initiation) in PMMA. 

around the propagating crack tip. As is apparent from the figure, there 
appears to be no region around the crack tip over which Yf is constant. 
Indeed, the spread in Y;’ values from different locations is as much as 
400%. Thus, extraction of dynamic stress intensity values obviously 
cannot be based here on a simplistic assumption of near tip Kfl- 
dominance. The figure also contains the results of a least-squares 
procedure of the fitting of relation (11) to the experimental data Y;’ 
obtained from the CGS interferogram. The fitted expression (dotted 
line) corresponds to the six-term transient expansion for 6,, + a22 (five 
terms for (al&,)( oXI + a&) and seems to capture all the essential 
features of the experimental results for all values of r, and 8, that lie 
outside the near-tip 3-D zone whose maximum extent is r,/h = O-5. 

In the reflection mode, CGS fringe patterns correspond to contours 
of equal du,/&,. Recalling that for plane stress deformations 

relation (11) will be modified to give: 

Zf(r,, 0,) = (z)&4zEG 
1 cosl 

2 
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where &, d2, . . . , 6, are functions of time. 
Lack of &‘-dominance here implies that Zf(r,, 0,) is not constant. To 

demonstrate this in a reflection arrangement, a series of dynamic 
fracture tests were performed again using impact loaded three-point 
bend specimens made of PMMA. The front planar surface of the 
specimen was coated with a reflective aluminum coating by means of 
vacuum deposition. The reflection CGS arrangement described by 
Krishnaswamy ef al. 2o was used to obtain fringe patterns of the type 
shown in Fig. 13. Typicafly a six term expansion in- b,, + B;2-was found 

Fig. W. Left: Superposition of a six-term transient expansion fit and the correspond- 
ing reflection CGS pattern of a dynamically propagating crack in PMMA. Right: Data 
points (crosses) used in the least square analysis and the corresponding Kt-dominant fit. 
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to be necessary to adequately describe the crack tip fields. To provide a 
visual demonstration of the agreement between the six term fit and the 
experimental data, a reconstructed fringe pattern from the transient fit 
is shown superimposed on the interferogram in Fig. 13. Here the 
broken lines represent the fringe pattern reconstructed from the 
transient high-order fit. Also shown in the right half of the picture is a 
fringe pattern reconstructed from only the term associated with Kf’ 
(term of order r;ln in the stresses). It is obvious from this comparison 
that the one term field description fails to describe the experimental 
fringe pattern. 

Finally Fig. 14 shows the variation of Zd with normalized radial 
distance (r,/h) for different radial lines (0, = 0, 15”, 30”, 120”). Again, 
and as in the transmission case, Z;l is clearly not a constant as would be 
expected for K;‘-dominance. On the other hand, the experimental 
measurement (discrete points) falls very close to the analytical result of 
the transient high order expansion, at least for t-,/h > O-5 (extent of the 
3-D zone). 

As evident from the above results for the cases discussed, the 
assumption of asymptotic K;‘-dominance fails in the plane stress region 
surrounding the near tip three-dimensional zone. It is therefore 
expected that caustic patterns obtained from such regions and 
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analyzed by using the classical analysis of caustics (see Section 3, eqns 
(6)-(9)) would not yield the correct value of stress intensity factor. This 
is true because such cases the crack tip fields are not well approximated 
by the single term expression (6). 

4.2 Synthetic caustics 

In order to demonstrate the above conjuncture conclusively and to 
illustrate the inadequacy of the classical analysis of caustics for 
analyzing truly transient crack growth phenomena, the following 
procedure is adopted. 

From the multi-parameter analysis of the (a(&,, + &)/&,) patterns 
obtained using CGS transmission (described in the previous section), 
one can obtain K;‘, &, &, /I3 . . . . Once these constants are deter- 
mined, (a/ 8x,)( &rl + &) can be calculated using the expression for 
(& + &). Now, let us remember that the caustic mapping in transmis- 
sion is given by: 

x, =x, + z, c,h $ (&I + &) , [ a 1 cu=1,2 

where (Xl, X,) denote the in-plane coordinates of the caustic plane 
located at a distance. z, from the specimen plane (x1, x,) along the 
optical axis. Using the above mapping, caustics have been generated 
from the CGS fringe patterns. One such caustic for a time instant 20 ps 

-. . . . . . . . 

Fig. 15. Synthetic caustic obtained by analyzing transmission CGS pattern for a time 
instant 20 ps after crack initiation. 
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after crack initiation is shown in Fig. 15. The image plane distance 
(zO = 6 m) is such that the initial curve radius is well outside the crack 
tip 3-D region (r, - l-04/2). If one were to synthetically plot the caustic 
based only on the value of Kf’ (determined from a multi-parameter 
transient fit to the CGS pattern), the caustic should look like the one 
shown by the broken line. 

This clearly demonstrates the effect of transient higher-order terms 
on the diameter of the caustic. The effect in the computed value of K;1 
is expected to be even more pronounced. Indeed, if the synthetic 
caustic is now interpreted in the classical way, as if it were generated by 
a K;‘-field (see eqn (8)), the resulting value is found to be 25-30% 
higher than the value of K;1 obtained from the full field measurements 
which were input in the numerical calculation. To demonstrate this 
clearly, the value of K:(t) measured from the full field CGS patterns, 
using the transient higher-order fit, for different times after crack 
initiation are plotted in Fig. 16. Also in the same plot, values of 
Kf’-caustic obtained by interpreting the synthetic caustic (generated 
from the experimental field measurements) in the classical manner are 
displayed. The figure clearly shows a persistent difference of the order 
discussed above which is due to the violation of the assumption of strict 
K;‘-dominance during transient crack growth. 

Indeed this is consistent with the results of the bifocal caustics 
experiments presented in Section 3, where pairs of caustics simul- 
taneously generated from different distances from the crack tip, during 
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crack growth, and analyzed in the conventional way also resulted in 
differences in K;’ of the same order. 

5 CONCLUSIONS 

In this work we discuss several possible sources of inaccuracy that may 
arise in the classical interpretation of caustic patterns obtained during 
dynamic crack growth in nominally elastic materials. A modified 
caustics set-up (bifocal caustics arrangement) and a new full field 
optical technique called ‘Coherent Gradient Sensing’ are used in this 
investigation. Based on the results obtained from these two independ- 
ent techniques, we emphasize the following points: 

1. The existence of a near-tip three-dimensional zone excludes the 
possibility of interpreting caustic patterns that are obtained from 
distances smaller than one half of the specimen thickness from 
the crack tip. 

2. For distances from the crack tip greater than half the specimen 
thickness, where plane stress conditions exist, the classical 
interpretation of caustic interpretation of caustic patterns is 
possible only if the surrounding field is strictly Kt-dominant (well 
approximated by the r-1’2 singular term of the plane stress 
asymptotic expansion). 

3. In most transient crack growth events K”-dominance is not 
generally observed, especially at times close to crack initiation or 
arrest. This is also true in laboratory size specimens where stress 
wave reflections may produce non-uniform stress-intensity factor 
histories. In such cases a truly transient higher order expansion is 
necessary for correctly describing stress fields outside the crack- 
tip three-dimensional zone. 

4. Under transient crack growth conditions, use of the classical 
analysis of caustics in the interpretation of the optical patterns 
may result in errors that could exceed 30% in the value of the 
stress intensity factor. 
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